
1

CS 188: Artificial Intelligence
Spring 2010

Lecture 10: MDPs

2/18/2010

Pieter Abbeel – UC Berkeley

Many slides over the course adapted from either Dan Klein,

Stuart Russell or Andrew Moore

1

Announcements

� P2: Due tonight

� W3: Expectimax, utilities and MDPs---out
tonight, due next Thursday.

� Online book: Sutton and Barto

http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html

2

2

Recap: MDPs

� Markov decision processes:
� States S

� Actions A

� Transitions P(s’|s,a) (or T(s,a,s’))

� Rewards R(s,a,s’) (and discount γ)

� Start state s0

� Quantities:
� Policy = map of states to actions

� Utility = sum of discounted rewards

� Values = expected future utility from a state

� Q-Values = expected future utility from a q-state

a

s

s, a

s,a,s’

s’

4

Recap MPD Example: Grid World

� The agent lives in a grid

� Walls block the agent’s path

� The agent’s actions do not always

go as planned:

� 80% of the time, the action North

takes the agent North

(if there is no wall there)

� 10% of the time, North takes the

agent West; 10% East

� If there is a wall in the direction the

agent would have been taken, the

agent stays put

� Small “living” reward each step

� Big rewards come at the end

� Goal: maximize sum of rewards

3

Why Not Search Trees?

� Why not solve with expectimax?

� Problems:
� This tree is usually infinite (why?)

� Same states appear over and over (why?)

� We would search once per state (why?)

� Idea: Value iteration
� Compute optimal values for all states all at

once using successive approximations

� Will be a bottom-up dynamic program
similar in cost to memoization

� Do all planning offline, no replanning
needed!

6

Value Iteration

� Idea:
� Vi

*(s) : the expected discounted sum of rewards accumulated
when starting from state s and acting optimally for a horizon of i
time steps.

� Start with V0
*(s) = 0, which we know is right (why?)

� Given Vi
*, calculate the values for all states for horizon i+1:

� This is called a value update or Bellman update

� Repeat until convergence

� Theorem: will converge to unique optimal values
� Basic idea: approximations get refined towards optimal values

� Policy may converge long before values do
7

4

Example: Bellman Updates

8

max happens for

a=right, other

actions not shown

Example: γ=0.9, living

reward=0, noise=0.2

Convergence*

� Define the max-norm:

� Theorem: For any two approximations U and V

� I.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

� Theorem:

� I.e. once the change in our approximation is small, it must also
be close to correct

10

5

At Convergence

� At convergence, we have found the optimal value

function V* for the discounted infinite horizon problem,

which satisfies the Bellman equations:

12

Practice: Computing Actions

� Which action should we chose from state s:

� Given optimal values V?

� Given optimal q-values Q?

� Lesson: actions are easier to select from Q’s!

13

6

Complete procedure

� 1. Run value iteration (off-line)

�Returns V, which (assuming sufficiently

many iterations is a good approximation of

V*)

� 2. Agent acts. At time t the agent is in

state st and takes the action at:

14

15

7

Utilities for Fixed Policies

� Another basic operation: compute

the utility of a state s under a fix

(general non-optimal) policy

� Define the utility of a state s, under a

fixed policy π:

Vπ(s) = expected total discounted

rewards (return) starting in s and

following π

� Recursive relation (one-step look-

ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’

18

Policy Evaluation

� How do we calculate the V’s for a fixed policy?

� Idea one: modify Bellman updates

� Idea two: it’s just a linear system, solve with
Matlab (or whatever)

19

8

Policy Iteration

� Alternative approach:

� Step 1: Policy evaluation: calculate utilities for some

fixed policy (not optimal utilities!) until convergence

� Step 2: Policy improvement: update policy using one-

step look-ahead with resulting converged (but not

optimal!) utilities as future values

� Repeat steps until policy converges

� This is policy iteration

� It’s still optimal!

� Can converge faster under some conditions

20

Policy Iteration

� Policy evaluation: with fixed current policy π, find values

with simplified Bellman updates:

� Iterate until values converge

� Policy improvement: with fixed utilities, find the best

action according to one-step look-ahead

23

9

Comparison

� In value iteration:
� Every pass (or “backup”) updates both utilities (explicitly, based

on current utilities) and policy (possibly implicitly, based on
current policy)

� In policy iteration:
� Several passes to update utilities with frozen policy

� Occasional passes to update policies

� Hybrid approaches (asynchronous policy iteration):
� Any sequences of partial updates to either policy entries or

utilities will converge if every state is visited infinitely often

25

Asynchronous Value Iteration*

� In value iteration, we update every state in each iteration

� Actually, any sequences of Bellman updates will

converge if every state is visited infinitely often

� In fact, we can update the policy as seldom or often as

we like, and we will still converge

� Idea: Update states whose value we expect to change:

If is large then update predecessors of s

10

MDPs recap

� Markov decision processes:
� States S

� Actions A

� Transitions P(s’|s,a) (or T(s,a,s’))

� Rewards R(s,a,s’) (and discount γ)

� Start state s0

� Solution methods:

� Value iteration (VI)

� Policy iteration (PI)

� Asynchronous value iteration

� Current limitations:

� Relatively small state spaces

� Assumes T and R are known

27

